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Abstract

A systematic examination of calibration and quantitation methods

available to analytical chemistry is made. First, simple linear calibration

with one sensor is reviewed with an emphasis on chemical problems that can

invalidate calibration models and what can be done about them. Then, shift

is made to multivariate methods used for multicomponent analysis ending in a

discussion of bilinear forms.
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The general problems of calibration and quantitation are well known to

analytical chemists. The traditional approach to quantitative analysis has

often been to find a single sensor which was specific for the desired analyte

and responded in a linear manner to changes in the analyte concentration.

The requirement of a fully selective sensor frequently necessitates various

separation or purification steps prior to the analytical measurement. An

alternative approach is to use many analytical sensors and multivariate data

analysis methods. The objective of this review is to provide the reader with

an overview of multivariate calibration and quantitation methods and to

discuss some of the assumptions inherent in applying these approaches to

analytical measurements.

Analytical Chemistry has recognized the importance of this problem by

establishing a report on Chemometrics as a part of its biennial Fundamental

Reviews issue. Sections of the past Chemometrics reviews entitled "Modeling

and Parameter Estimation", "Calibration", and "Resolution" are of particular

interest to researchers in this area (1,2).

This review is grouped into three distinct sections. A review of the

single-component linear model will provide the basis for development of the

more complex models, such as the multicomponent linear model. The latter is

based on one-dimensional response measurements; for example, the absorption

spectrum of a mixture sample. The third section will discuss the multi-

component bilinear model. This model can be used to describe two-dimensional

chemical measurements such as fluorescence excitation-emission matrices, gas

chromatography - mass spectrometry (GC/MS) data, liquid chromatography - UV

(LCIUV) data, or spatial/spectral data as obtained from imaging in surface

analysis.
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Single Component Linear Model

The situation most favored by analytical chemists is when the response,
9

r, of a single analytical sensor is a linear function of the concentration,

c, of a single chemical analyte of interest.

r=kc (1)

In order to obtain an estimate of the analyte concentration, two general

steps are required. First there is a calibration step, in which the sensi-

tivity coefficient, k, is determined based on the analysis of one or more

samples of known concentrations. The second is a quantitation step, in which

the response of the unknown sample is measured and the analyte concentration
S.

is estimated from the calibration model. Implicit in using this simple

linear model are a series of assumptions about the chemical system being

examined: first, the response is linearly related to the analyte concen-

tration over the concentration region of interest; second, the analytical

sensor is fully specific and responds only to the analyte of interest; and

third, the sensitivity coefficient does not change between the calibration

and quantitation steps. If these three assumptions are obeyed for a given

experimental situation, then the calibration line is obtained by measuring

the response at various analyte concentrations (3).

Since the analytical sensor is fully specific, the response of a sample

containing no analyte is by definition equal to zero. This implies that the

calibration line must pass through the origin. In principle, measurement of .

a single sample of known analyte concentration is sufficient to determine the

slope of the calibration line. In practice, several measurements are

preferred. Even in situations where a theoretically linear relationship is

known to exist, the measured experimental values will rarely be co-linear

with theoretical values due to sample variance, measurement errors, and

random noise.
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Random Error

The method of least squares is commonly used to estimate the position of

the calibration line. The mathematical formula for calculation of the least

squares regression line and the confidence region around this line are well

known (4,5). Several additional assumptions are required when the method of

least squares is used to estimate the calibration relationship (6). The

first assumption is that all the measurement error is associated with the

dependent variable, the measured response. This condition requires the

variance in the concentrations of the standard samples to be much smaller

than the variance in the corresponding measured responses. Secondly, each

measured response is drawn from a normal distribution with a mean equal to

the true response for the corresponding analyte concentration. This requires

that repeated measurements of the response for a single sample yield a

Gaussian distribution. Lastly, the variance of the measured response must be

independent of the analyte concentration, or in statistical terms there must

be homogeneity of variances.

If M calibration samples have been analyzed, with each calibration " -

sample being measured one or more times such that N total calibration

measurements were made, then the calibration step requires estimating the

values of two parameters; the slope, P1, and the intercept, P0 of the least

squares line. For the single-component linear model, the least squares

problem can be expressed as minimizing the sum of the squares of the

residuals in the following vector equation:

r + Plc + E (2)

where r is a column vector containing the N measured responses, c is a column
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vector containing the N known analyte concentrations, and E is the vector of

residual errors not fitted by the model.

Shewell (7) has observed that varying the location of the calibration

points will have an effect on the accuracy of the estimates obtained for the

slope and the intercept of the regression line. In general, for a constant

total number of calibration measurements, N, the most accurate estimate of the

intercept, POI is obtained if N-i measurements are made at the lowest permis-

sible analyte concentration and one measurement is made at the highest per-

missible analyte concentration. If the most accurate estimate of the slope is

desired, then the measurements should be equally divided between the highest

and lowest permissible concentration levels.

Agterdenbos (8) considered the effect of altering the concentrations of

calibration samples on the precision obtained in the final concentration

estimate. Both the distribution of the calibration measurements over the

concentration range of interest and the number of replicate measurements were

found to influence the results obtained in the subsequent quantitation step.

A new quantity, the eccentricity, can be defined to describe the relationship

between the precision of the estimated sample concentration and locations of

the calibration points. The precision of the estimated sample concentration, •

Ax, is a function of several parameters: the selected statistical significance

level, t; the standard deviation of the analytical procedure, s; the total

number of calibration measurements, N; the number of replicate measurements of

the sample, n; and the location of the sample measurement in the calibration

range or the eccentricity, E.

Ax 2 t s (N"1  n- 1 . E)1/2  (3)

Page 4

° : . . . . . .. . .



The eccentricity, E, can be calculated from the following relationship:

Nr

E= ( " x)2 / E (x. -x) (4)I A i=1

where is the mean estimated analyte concentration, and x is the mean
S

concentration of the calibration samples. This is equivalent to the center

of gravity of the calibration plot. From these relationships it is clear

that the minimum uncertainity in the estimated analyte concentration will

occur when the sample concentration is equal to the mean concentration of

the calibration samples, in which case the eccentricity is equal to zero.

As the estimated sample concentration moves to a value further from the

center of gravity of the calibration plot the eccentricity increases and the

p precision of the estimated sample concentration becomes poorer. , .

In many analytical procedures, the assumption of homogeneity of vari-

ances may be false. For example, the precision obtained in spectrophotome-

try may be limited by the measurement readout error, detector shot noise, or

source flicker noise (9). The classical approach to estimating measurement

precision has assumed that the readout error of a linear transmittance scale

is the dominant factor; in modern instruments it is far more likely that the

dominant factor will be the photomultiplier shot noise.

Agterdenbos (6) has suggested that chemists give more care to the

proper selection of the calibration relationship being used when performing

a least squares analysis. One method for obtaining the calibration line

when the precision of the response measurement is dependent on the analyte

concentration is to use a weighted least squares procedure. Weighted least

squares regression is analogous to ordinary least squares. Both methods are

D based on minimizing the sum of the squared deviations between the actual
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responses and the calibration line. However, when weighted least squares is

used, each residual is multiplied by a weighting factor, w i, proportional to

the reciprocal of the variance of the corresponding response measurement,

r.. The relationship to be minimized is now given as

wE w (r. 2c PI)(5)Ii =1 i  i - o "P ) ():.>

Schwartz (10) has illustrated the potential for nonuniform variance in

both spectroscopic and chromatographic experiments. He concluded that if

the analyst ignores variance nonuniformity, roughly the same calibration

curve will be obtained. However, the confidence bands around the estimated

analyte concentration may be severely in error at the extremes of the

calibration curve. Garden and co-workers (11) have shown how weighted least

squares procedures can improve the precision of the estimated analyte

concentration when compared to ordinary least squares calibration.

Deterministic Error

In addition to the statistical errors which may arise from the improper

application of least squares methods, the single-component linear model may

also be affected by various types of deterministic errors. In most cases

these deterministic errors can be traced to violation of the initial

assumptions underlying the original model. Often if the source of the error

can be identified, the calibration model can be adjusted to bring into

consideration the effects of these additional factors.

g 6
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One serious problem which occurs frequently in analytical chemistry is

the presence of a sample matrix effect. This can be defined as a difference

in the sensitivity coefficient, k, between the unknown sample being analyzed

and the calibration standards. The interaction of the analyte with the

sample matrix results in a change in the slope of the calibration plot.

The method of standard addition is widely used in analytical chemistry

to address this particular type of problem. The response of the unknown

sample is measured, a known amount of the pure analyte is added to the

sample, and then the response of the sample after this addition is measured.

The initial response measurement, ro, depends only on the unknown concentra-

tion, co. After the addition is made the response is a function of both the

original analyte present and the amount added. The matrix-corrected sensi-

tivity coefficient is obtained from the change in the response due to the

addition of pure analyte. This method still requires the response to be

linearly related to the concentration and the sensor to be totally specific

for the analyte of interest.

Different groups of workers have applied statistical techniques to

calculate the optimum method of making the additions and the resulting

precision in the estimate of the analyte concentration (12,13). The optimal

size of the addition to be made is a function of the precision of the sensor

and the form of the calibration function. Franke, de Zeeuw, and Hakkert (14)

concluded that if a single addition is made, then optimum precision is

obtained by making an addition of the largest possible amount of standard

without exceeding the linear range of the calibration curve and making an

equal number of replicate measurements before and after the addition.

The single-component linear model assumes that the analytical sensor

posesses total specificity for the analyte of interest. Implicit in this
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assumption is a requirement that the response of the sensor at zero analyte

concentration is zero response units, or simply stated, the sensor can be

zeroed. Two types of problems may lead to failure of this assumption:

first, an instrumental or constant background; and second, a sample- or

volume-dependent background.

An instrumental background will result in the addition of a constant

non-volume-dependent term, d, to the simple linear model.

r=kc +d (6)

In a spectophotometric analysis, this constant term may arise from the use

of mismatched optical paths or cells, temperature differences between the

sample and calibration solutions, amplifier offsets, or similar problems.

An instrumental background will cause a bias in the concentration estimate

obtained from either a normal calibration or a standard addition

experiment. Fortunately, this type of background can be handled by

standard dilution.

A significantly more difficult problem is the presence of a sample

background. In this situation the sensor no longer posesses complete

specificity, but responds both to the analyte of interest and also one or

more other components present in the sample. This problem has given rise

to a multitude of separation and purification techniques directed at

eliminating potential interferences. If the identities of the additional

components are known and standards of these components are available, then

the situation can be treated as a multicomponent analysis problem.

However, if the identities of any of the interferents are not known or if

calibration with these components is not possible, then the situation

represents a sample- or volume-dependent background problem.
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Multi-Component Linear Model

The multicomponent linear model is simply a generalization of the

familiar single-component model. The responses due to each of the

components present in the sample are assumed to add linearly, or can be

transformed to yield the total response for any analytical sensor. For the

case of two sensors, which respond to both of two analytes, a system of two

equations is obtained. This can be written as

2
r Ec ik c 1k 11+C2k 2

i=1 i i 1 l 2 21
(7)

2r= E cik.-k
=1 i12 c 1 k12 C2 k22

where r. is the response measured at the j-th sensor, c. is the concentra-J

tion of the i-th analyte, and k is the sensitivity coefficient of the

j-th sensor for the i-th analyte. Each equation represents the measured

response for a single analytical sensor as the sum of the responses due to

the individual components. For a mixture of N components, this model is

generally written in matrix forn as follows

r= c'K (8)

The vector r is a column vector containing the response of the sample mea-

sured with P different sensors. The vector c is a column vector containing

the concentrations of the N analytes present in the sample. The prime ."-

denotes the transpose of a matrix or vector. The matrix K contains the

sensitivity coefficients for the N components at each of the P analytical

sensors. Each row of the K matrix contains the P sensitivity coefficients of

a single analyte. Each column of the K matrix contains the sensitivity

coefficients of all N components for the same analytical sensor.
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Several assumptions are implicitly made when the multicomponent linear

model is used. These assumptions are analogous to the assumptions made with

the single-component linear model. First, the response of each sensor is

assumed to be linearly related to all analyte concentrations over the con-

centration ranges of interest. Second, the response due to each component

present in the mixture sample is independent of the other N-I components.

Third, the response of each sensor can be zeroed. Lastly, the sensitivity

coefficients do not change between the calibration and quantitation steps.

Classification of Samples

Martens et.al. (15) proposed the classification scheme for multicom-

ponent mixtures shown in Table I. Mixture samples in which the individual

component concentrations are known will be designated as class 1 samples;

those samples in which the component concentrations are not known will be

designated as class 2 samples. Class 1 samples are further grouped into two

types. The first group is class IA. These samples are fully defined, both

the individual component concentrations and the pure component sensitivities

are known to the analyst. In the second group, class 1B, the individual

component concentrations are known but the pure component sensitivities are

unknown. If N components are present in the mixture, then estimation of the

individual component sensitivities requires either N pure samples or N

mixtures of known composition. This class of samples represents the general

problem of multicomponent calibration.

Class 2 samples are also grouped into two types. The first group, class

2A, are samples in which the component concentrations are unknown but the

individual pure component sensitivities are known. This type of sample is

representive of a multicomponent quantitation problem. The second group,

class 2B samples, are mixtures in which neither the individual component

concentrations nor their sensitivities are known by the analyst.
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Analysis of a single class 2B sample is not possible. However, if a set

of class 2B samples are available in which the -elative concentrations of the

components varies from sample to sample, then the methods appropriate to the

multicomponent bilinear model may be used to obtain regions of physically

allowable pure component sensitivities and concentration. An unambiguous

solution for the sensitivities and individual component concentrations is not

possible unless the analytical chemist can obtain further information about

the samples.

Calibration

Several different methods are available for calibration in a multicom-

ponent analysis. Kaiser (16) has grouped calibration methods into three main

approaches: 1) a-calibration, or calibration with synthetic standards; 2) a-

calibration, or calibration with analyzed standard samples; and 3) 6-calibra-

tion, or calibration by differential additions. Of these three methods, cal-

ibration with synthetic standard samples is in Kaiser's view the most funda-

mental. Given a mixture of N components whose response can be measured at

each of P different analytical sensors, the question arises of selecting the

best method for first performing tl.e calibration and then estimating the N

analyte concentrations. If samples of the N pure components are available,

then the simplest method of obtaining the sensitivity coefficients is to

individually measure the response of each pure compound. This method may not

always be possible. In some cases the pure substances may be very difficult

or expensive to obtain and purify or the mixture may include analytes which

are unstable in purified form. If the pure analytes are not available, but it
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is possible to obtain a set of pre-analyzed standard samples, then the cali-

bration can be based on comparison to these standard mixtures. Finally, if

* matrix effects are known to be present, the most appropriate method is to use

* a standard addition analysis to allow calibration within the sample matrix.

* . Multicomponent calibration based on the analysis of a set of mixture

samples of known analyte concentrations to obtain the calibration relation-

ship is frequently used. If a well characterized set of M mixture samples is

obtainable, the sensitivity coefficients can be obtained by ordinary or

weighted least squares multiple regression. The normal representation of

this problem is as follows

R=CK (9)

where R is an M x P matrix of measured responses for each of the M mixture

samples, C is an M x N matrix containing the N analyte concentrations for

each of the mixtures, and K is defined as before. Since the concentrations

of all of the analytes in each mixture sample are known and the mixture

responses can be measured, the sensitivity matrix, K, can be obtained by

multiplying both sides of equation 9 by the inverse of C. If there are the

same number of mixture samples as analytes present, i.e. M = N, then this

system of linear equations is exactly determined and the calibration step

requires inverting C to yield

K = C'R (10)

". However, if the number of calibration mixtures used is greater than the

number of analytes, i.e. M > N, then the best estimate of the sensitivity

* matrix, K, is generally calculated from least squares multiple regression in
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matrix form. The generalized inverse solution for the sensitivity matrix is

given as

K = (C'C)-C'R (11) .

In order to obtain the sensitivity matrix, K, from either equation 10 or 11,

the number of analytical sensors, P, must be greater than or equal to the

number of analytes. The analyte concentrations in a unknown mixture sample

can be obtained by measuring its response and multiplying the transposed

response vector by the generalized inverse of K,

c' = r'K'(KK') 1  (12)

For the entire analysis, calibration and quantitation of N analytes, this

procedure requires at least N mixture samples, and inversion of two N x N

matrices; C'C and KK'.

Brown and associates (17,18) have proposed an alternative formulation of

the matrix multicomponent model, where instead of considering the response as

a function of concentration, they consider the concentration a function of the

measured response. This is written as

C =R P (13)

where the matrices C and R are defined as before and the matrix P represents

the proportionality between C and R. The matrix P will have dimensions of P

x N, i.e. sensors by analytes. For this model, the calibration step is

expressed as

P = (R'R)-R'C (14)
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which requires the inversion of the P x P matrix, R'R. Quantitation of an

unknown sample is accomplished directly by multiplying the response vector,

r, by the calibration matrix, P, to yield

c' :r'P (15)

The authors state that this method has the advantage of requiring only

one matrix inversion instead of the two required by the conventional nota-

tion. Subsequently, they used this method for the spectrophotometric analy-

sis of serum lipids with 85 calibration samples and 15 analytical wavelengths

(19).

The difficulity in this analysis lies in the relative dimensions of the

various matrices. In order to obtain a solution of equation 14 there must be

more calibration mixtures than sensors being used. This is a drawback when

the availability of diode array spectrophotometers makes it possible to

measure 256 or more wavelengths as easily as four or five. In order to use

all of the available wavelengths, one calibration sample must be prepared for

every sensor used. Additionally, as the number of calibration samples and

wavelengths are increased the size of the matrix R'R, which must be inverted

in the calibration step, is also increased. If the sensors themselves are

highly correlated or if the number of analytes is much less than the number

of sensors, then the matrix R'R may have an effective rank of much less than

P. In this situation, R'R will be almost singular and the inversion will be

numerically unstable.

The method of principal component regression can be used as an alterna-

tive to ordinary least squares multiple regression (20). This method is

based on replacing the M x P response matrix, R, with the product of two

smaller matrices, T and B. Equation 13 can now be written as

C =T B P (16)
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where the matrix T has dimensions M x A and the matrix B has dimensions A x P,

with A (< N and A << P. Decomposition of R into the matrices T and B is

called singular value decomposition, eigenvector projection, factor analysis,

or principal component analysis, depending on the scaling of R. The matrices

T and B are selected in order to represent R as closely as possible and such

* that the columns of T and the rows of B are both orthogonal. Geometrically,

the decomposition of R into T-B can be considered as a projection of the

original data points, or mixture spectra, from a P-dimensional measurement

space into a smaller A-dimensional space. The matrix T, whose elements are

sometimes called the factor scores, contains the coordinates of the data

points in the new A-dimensional space and the matrix B, containing the factor

loadings, is the rotation matrix used to perform the projection. Solution of

the original calibration problem now requires the inversion of T'T instead of

R'R. Since the columns of T are orthogonal, this inversion is numerically

well conditioned. This yields a calibration matrix G instead of the calibra-

tion matrix P.

G = B P = (T'T)'IT'C (17)

The desired calibration matrix P can then easily be found as

P = B'G (18)

The quantitation step is exactly the same as used by Brown and co-workers (17,18).

A different approach to the multicomponent calibration problem, called

partial least squares in latent variables (PLS), has been suggested by S.

Wold and co-workers (21). PLS was developed by H. Wold (22) to solve complex

- data analysis problems in econometrics and psychometrics. It is somewhat

analogous to principal component multiple regression in that the independent

Page 15
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variables, in this case the matrix R, are described by a principal component

type model and then combined with a regression relationship relating the

responses to the analyte concentrations contained in the matrix C. The dif-

ference is that in the PLS method the projection T is computed not only to

model R but also to maximize its correlation with C. In principal component

'* regression, T is selected only to model R. The PLS method involves first

scaling both the response matrix, R, and the concentration matrix, C, such

that the standard deviation of each column in these matrices is equal to one.

* The matrices are then centered by subtracting the average for each column.

Each matrix is then modeled as a linear combination of new orthogonal latent

variables. The latent variables are calculated by an iterative method which

does not involve an explicit regression step. The maximun number of latent

variables is the actual number of independent variables; however, normally

fewer latent variables are used to allow filtering of the noise present in

the data set. The PLS model is described as follows

A
C.• C. E U. b(g..cIj = cj I ' J Ij J.

A
rik k tildlk ik (20)

u il Pltil for all 1=1,...A (21)

where u.il and t i  are the latent variables and b. and dk are the;.. . ,k

loadings used to describe the concentration and response matrices,

respectively. Equations 19 and 20, known as the outer relationship,

describe the projection of the original variables into an A-dimensional

space. Equation 21, known as the inner relationship, describes the

correlation between the latent variables. The quantitation steo in PLS is

accomplished by first centering and scaling the measured response spectrum

of an unknown mixture, calculating the latent variables, tI from the
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loadings, bij, calculating the latent variables, u.i, from the inner

relationship, and then estimating the concentrations from equation 19.

The PLS method has been compared to principal component regression for the

multicomponent calibration and quantitation of spectrofluorimetric data

from mixtures of humic acid and ligninsulfonate by Lindberg and co-workers

(23). They concluded that: first, PLS was computationally faster than

principal component regression; second, PLS calibrations have better

predictive qualities since the method extracts information which has

predictive relevance for the concentrations of the calibration mixture;

third, a criterion could be established for determining if the calibration

model was appropriate for a given unknown mixture; and fourth, like other

methods based on principal component analysis, PLS was able to compensate

for unidentified fluorescent species in the solution. This final conclu-

sion implies that an analyte can be quantitated in the presence of a

totally unknown background, but the experimental data reported does not

support this conclusion.

It was already noted that matrix effects can affect the accuracy of

the calibration in a single component analysis. Exactly the same difficul-

ties may arise with the multicomponent linear model. As Kaiser (16)

noted, standard additions provide the most appropriate calibration method

if matrix effects occur. When discussing the single component linear

model, it was observed that in most cases, the well known standard addi-

tion method was able to correct for these matrix effects, but the simple

standard addition method required a fully selective sensor. Saxberg and

Kowalski (24) have developed a multicomponent extension of the standard

addition method which they named the generalized standard additon method

or GSAM. The generalized standard addition method has two distinct
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advantages: first, it allows the use of non-selective analytical sensors;

and second, it corrects for the presence of matrix effects. The first

advantage is a byproduct of the multicomponent nature of the method. This

does not require the individual sensors to be fully selective for any one

analyte, however it does require that the sensors do not respond to

components in the sample of which additions have not been made. The

second advantage is the result of using standard additions and making all

the measurements within the sample matrix in order to obtain the sensiti-

vity matrix, K. The response of each sensor is normally assumed to obey

the linear multicomponent model given in equation 8, but models involving

higher dimension polynomial relationships between the concentration and

absorbance were described.

Experimentally, GSAM requires that M additions are made to the sample

being analyzed. Each addition may contain one or more of the pure anal-

ytes, however, the additions must be made such that each pure analyte is

added to the sample at least once. After each addition the response at

each of P analytical sensors is measured. The response after the m-th

addition is modeled as

r= c' K (22)

where r is a column vector containing the measured responses, and cm is a

column vector containing the total concentrations of analyte present (C +

Ac). The response matrix, R, and the concentration matrix, C, are defined as

R'= [rl,r 2,r3 . ..rM]  (23)

C' = [cc 2,c3,. . .c] (24)

Page 18

-. . fi* .. . . . .. . . . . .



This allows a simple formulation of the problem as

R =C K (25)

Each row of R and C corresponds to a separate multiple standard addition.

The matrix R is always known. The matrix C is unknown since each row

includes the unknown analyte concentration plus the amount of analyte which

has been added. The matrix of sensitivity coefficients, K, is also unknown.

Solution of this linear multiple linear system is accomplished by separating

the terms as follows

C =AC + C0  (26)

R = AR + R0  (27)

where C and R are matrices with all rows identical to the initial concen-
0 0

tration and initial response vectors c and r, respectively, and AC and AR

are the matrices of the net change in concentrations and responses due to the

standard additions. AC and AR are always known to the analyst, hence the

sensitivity coefficients can be calculated from

AR = AC K (28)

The calibration step in GSAM is equivalent to the solution of this linear

system. Assuming N $ M, the solution is found by

K = (AC'AC) 1AC'AR (29)

or if N M, then AC can be inverted directly. The quantitation step is

given by equation 12. This is identical to the earlier discussion of the

least squares matrix solution of the multicomponent model. It must also be

noted that the matrix AC contains the effective concentration changes after
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each standard addition. Unless the volume changes are negligible, AC cannot

be known since the initial concentrations are not known. This problem can be

avoided by incorporating a simple volume correction into the GSAM to convert

from analyte concentrations to absolute quantities. Equation 22 is now

written as

K = (/Vm)nK (30)m m

where the vector nm contains the absolute quantities, in grams or moles, of

each analyte in a volume, V . Multiplying both sides of this equation by Vm m

leads to

= Vr' = n'K (31)Mm m

where the vector qm contains the P volume corrected responses. The remaining

equations are obtained by substituting the volume corrected responses; q, q,

and Aq, for the responses; r, R, and AR, and by substituting the absolute

quantities; n, N, and AN, for the concentrations; c, C, and AC.

Several more recent papers have examined the error propagation and

statistical aspects of using the GSAM. Jochum, Jochum, and Kowalski (25) have

stated the accuracy of GSAM in obtaining valid estimates of the initial

analyte concentrations is dependent on at least five distinct factors: first,

the accuracy of the response measurements; second, the accuracy and precision

of the multiple standard additions; third, the magnitude of the interanalyte

response interferences; fourth, the experimental design; and finally, the

mathematical algorithims used in the computations. The first two of these

factors are no different than the considerations required for any analytical

method. The final factor, selection of the mathematical algorithims, can

affect the results by introducing round-off errors into the computations.
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The upper bound on relative errors in the estimated concentrations was found

to depend on the condition number of both the calibration matrix, K, and the

experimental design, which is described by the addition matrix, AN. The

condition number of any nonsingular matrix A is defined as

cond(A) = IAIl IIA 11 (32)

where IIAII is the Euclidian norm of the matrix A. If the matrix A is

rectangular, then its condition number is given as

cond(A) = [cond(A'A)] 1 2  (33)

It is important to note that the condition number of any matrix is always

equal to or greater than one. In the GSAM experiment, the K matrix is - .

determined by the solution of an overdetermined system of linear equations

and therefore this matrix is not exactly known. Jochum, Jochum, and

Kowalski showed that errors in the response measurements can be amplified by

the chemist's choire of experimental design. An estimate of the error in

the calculated K matrix was found to be

II1 k-l IIII -l - Aqlll
< cond(AN) (34)

Ilkll - IlAq1  II

where Aql and AqI are the projections of Aq and Aq onto the range of N. A

modification of the computational algorithim, called the incremental dif-

ference calculation, was described which minimized the error amplification

due to the experimental design. In the incremental difference calculation

the AQ matrix is composed of the change in volume corrected response between

two successive additions and the AN matrix is composed of the absolute quan-

tity of analyte added in a single addition. After scaling the condition

number of the AN matrix is equal to one, which results in no error amplifi-

cation being introduced in the final concentration estimates due to the
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experimental design.

The condition number of the K matrix can also lead to a magnification of

the potential concentration errors. The authors showed that, in the worst

case, a small relative error in the initial response vector, ro, could be

magnified by the cond(K) to produce a larger relative concentration error. - -

The error in the concentration estimates was found to be

I116c 0 11 [ 116rollI 116k11 1

< cond(K) 1 0 (35)
11coII - llr 0  Ilkll

where 6c0, 6ro, and 6k are the errors present in co, ro, and K, respectively.

Recently, Kalivas (26) showed the condition number of the K matrix is a

extremely useful tool for assessing the analytical cost in terms of relative

uncertainty of varying sensor selectivity. Minimization of the condition

number of the K matrix can be used as a criteria for the selection of the

optimal set of sensors for a particular multicomponent analysis.

Moran and Kowalski (27) have considered the statistical aspects of the

GSAM. They have found that the uncertainty in the estimates of the sensi-

tivity coefficients, i.e. the kij's, is dependent on three terms; the

measurement variance, correlation of the response measurements due to sub-

traction of the initial response, and variance arising from the volume

increase as a result of making standard additions. In order to reduce the

variance and obtain the best possible accuracy in the concentration esti-

mates, they recommend several steps. First, the volume increases must be

minimized. Second, if random noise is the dominant source of error, then the

total difference calculation method should be used. Third, the largest

possible additions of analyte should be made.
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Quantitation

Presuming the sensitivity matrix, K, has been obtained, the quantitation

step can be approached by an extension of the single component model.

Sternberg, Stillo, and Schwendeman (28) have described the application of the

least squares method in matrix form to the spectrophotometric analysis of a

five component mixture. They noted certain restrictions are necessary to

assure a solution to the matrix problem will exist. The length of the

response vector, r, and the column dimension of the sensitivity matrix, K,

must be equal to or greater than the number of analytes, therefore P must be

greater than or equal to N. In addition the rank of the sensitivity matrix

must be at least N, which implies the P sensors must span a minimum of an N-

dimensional space. If there are exactly the same number of sensors as there

are analytes present, i.e. N = P, then the solution to the matrix problem is

simply given as,

C= r' K "1  (36)

However, if more sensors than the minimum number necessary to obtain a

solution to the system of linear equations are used, i.e. P > N, then the

method of least squares can be used to obtain the set of estimated analyte

concentrations which minimizes the difference between the measured responses

and the responses predicted by the multicomponent linear model. The solution

to this least squares problem in matrix form was given in equation 12. Two

years later, Zscheile and co-workers (29) used the matrix form of the least

squares method to examine a four component spectrophotometric system. In

analyzing a system of RNA-constituents, they observed the stability of the

concentration estimates was very dependent on the wavelengths selected for

the analysis. The poor stability obtained with some sets of wavelengths was
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attributed to linear dependence of the underlying pure analyte spectra. The

best results were obtained when all the available wavelengths were used.

The same considerations regarding homogeneity of variance, which were

necessary for the single component linear model, must also be made when the

multicomponent model is used. Haaland and Easterling (30) applied a linear

additive multicomponent model to the analysis of infrared spectra of xylene

isomer mixtures. They observed the noise characteristics of most infrared

detectors were such that the noise was generally constant and independent of

the signal level. The signal measured by these detectors is in transmit-

tance, which is then converted to absorbance. Since Beer's law is generally

obeyed in this spectral region the absorbance is directly proportional to

concentration, however, the precision of the absorbance measurements are not

independent of the measured responses. To account for this non-homogeneity,

Haaland and Easterling used a weighted least squares procedure. Expanding

the absorbance signal as a Taylor series about the transmittance and retain-

ing only the first two terms, they found the variance of the noise was pro-

portional to the inverse of the square of the transmittance. Therefore, they

performed the analysis by first weighting each measured response in the spec-

trum by a factor equal to its transmittance squared. The matrix form of the

weighted least squares estimate of the analyte concentrations is given by,

C' r'V-1K'(K V K')"  (37)

where the matrix V is a diagonal matrix containing the reciprocal of the

weights. This method of weighting assumes the errors in the responses are

independent but with different variances. If the response measurements are

correlated, equation 37 may still be used, however, the matrix V is no longer . -

diagonal (4).

Page 24

. . . . . . . . . . . ... -- -..-. .. * * '... -. .'. -]



Deterministic Errors

As was observed with the single component model, various types of deter-

ministic errors may affect the multicomponent linear model. These errors,

which may be due to chemical, e.g. matrix effects or interferences, or instru-

mental factors, e.g. drifting or non-zeroed sensors, result in violating the

assumptions present in the linear additive response model. In two recent

papers (31,32), Kalivas and Kowalski have extended the GSAM model to add one

or more terms to the basic model which allow for the detection and correction

of sensor drift occuring during the course of the analysis. The GSAM model

with the inclusion of terms for so-called time additions is

N W3
r E c .k + E t k (38)ml j=1 mj ji i=1 N+1,1

where W is the polynomial order of the drift model. Volume correction was

performed as earlier described. The N+1-st to W-th rows of the K matrix

represent the coefficients of the drift model. The drift coefficients can be

examined statistically in order to detect the presence of a drifting analyti-

• .cal sensor. Estimation of the initial analyte quantities is accomplished as

before, after deletion from the K matrix of the rows containing the sensiti-

vity coefficients for the time additions. Implementation of the drift correc-

ting GSAM model requires augmenting the AN matrix with W rows containing the

time elapsed since the initial response measurement raised to the appropriate

power. This was accomplished by developing a completely automated system for

making the standard additions, measuring the responses, and recording the

elapsed time (32). In addition to implementing the time additions and drift

correction, this system was designed to make the standard additions by weight

instead of by volume in order to minimize the relative errors in measuring the

amount of analyte added.
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Implicit in the multicomponent linear model is an assumption that the

response of the analytical sensors can be zeroed. Two types of model failure

have been identified in connection with this assumption: first, an instru-

mental or constant background; and second, a sample or volume dependent

background. Altering the multicomponent model to compensate for an instrumen-

tal background can be accomplished by adding a constant term for each sensor,

r) = c'K + d' (39)

where the vector d contains the background contribution at each of the P

analytical sensors. Vandeginste et al. (33) has shown a dilution procedure

can be used to correct for a constant background response. Equation 39 is

rewritten for volume corrected responses as

Vor6 = Vo(c6K + d) =n6K + V0 d' (40)

where V0 is the initial volume of the sample mixture, r0 is the initial re-

sponse vector, co is the initial concentration vector, and no is the vector of

initial analyte quantities. A standard dilution is performed by adding a

volume, Av, of pure solvent to the mixture sample. Equation 39 can again be

rewritten in terms of the volume corrected responses; however, now the total

sample volume is V0 + Av. Since the absolute quantities of analyte present

have not been affected by the dilution, the difference in the volume corrected

responses, Aq, is simply

Aq' =q' -q= Avd' (42)

This relationship allows estimation of the constant background vector, d,

since it is a function of only the added volume, Av, and the vector of

* measured changes in the volume corrected responses, Aq.
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The presence of additional components in the sample mixture gives rise

to a sample or volume dependent background. This can be incorporated into

the standard multicomponent linear model by adding additional terms which

express the response as a function of the known analytes and the additional

interferents. The expanded model is

N T
r ck + E Ck for all 1=1,.. .P (43)

i=1 i il j=l 
J  jI

where r1 is ths response of the I-th sensor. The first summation, which runs

from one to N, accounts for the response caused by the N known analytes. The

second summation, which runs from one to T, accounts for the response caused

hy the presence of the T interfering components. Since the identities of the

T interfering components are not known, no standards for these components can

. be used nor can standard additions of these components be made. Hence, during

the course of the analysis, the relative amounts of the interferents with

respect to each other will not change. Therefore, these T interferents can be

replaced by a single term which represents their combined influence on the

measured sensor responses,

N
r= E c. k + f for all 1=1 ...P (44):.. i~=1 l I"

where fI is the combined background response at sensor I. The important dis-

tinction between this model and the model, given in equation 39 which de-

scribes an instrumental background, is that the term f1 is a function of the

* sample volume, therefore the standard dilution method used by Vandeginste does

not apply. Since the sample background, fl, is not known, an iterative method

must be used to perform mixture quantitation.
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In their original paper describing the GSAM model, Saxberg and Kowalski

(24) discussed the problem of analytical sensors which were not zeroed. They

observed that if the background response was small relative to the initial

unknown response and the problem was reasonably insensitive to perturbations,

then the effect on the final solution can be expected to be small.

Leggett(34) has applied non-negative least squares regression and simplex

optimization to multicomponent spectrophotometric data. He concluded either

of these methods avoid the problem of negative molar absorptivities or

concentrations which are sometimes obtained when ordinary least squares

regression has been used. This conclusion was reached with the stated

assumption that the correct model, e.g. all components were known, had been

used to set up the analysis. Gayle and Bennett (35) carried out simulation

studies to determine the effect of model departure in multicomponent analysis

on the concentration estimates obtained by ordinary least squares regression,

non-negative least squares regression, and linear programming. They observed

that when various types of model failure were simulated, all three methods

* . yielded biased results, with no single method being consistently superior to

the other two. In addition, of the three methods attempted only ordinary

least squares provided any indication that the model was not valid. Omission

of significant terms in this model frequently led to negative analyte concen-

trations, a result which obviously had no chemical meaning. However, non-

negative least squares regression and linear programming yielded results which

at least on the surface seemed chemically plausable, but were also signifi-

" .cantly in error.

- . The final type of model failure which may occur is a failure of the

assumed linear relationship between analyte concentration and the measured
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response. Apparent deviations from the ideal behavior described by the

Beer-Lambert law, which is widely used in spectrophotometric analysis, are

well known. Saxberg and Kowalski (24) developed the original GSAM model to

allow the response to be either a linear, quadratic, or higher degree

polynomial function of the analyte concentration. Unfortunately, as the

number of terms in the model increases, so does the required number of

standard additions and measurements which the analyst must make. An

alternative approach has been used by Vandeginste and co-workers (33) involv-

ing the application of a mathematical technique known as Kalman filtering to

provide continuous testing of the validity of the linear model during the data

acquisition stage of a GSAM experiment. Poulisse (36) has also applied the

Kalman filter to the analysis of multicomponent spectrophotometric mixtures.

Seelig and Blount (37,38) have applied this method to anodic stripping

voltammetry and S. Brown and co-workers (39,40) have used the Kalman filter

with linear sweep voltammetry and photoacoustic spectroscopy. This filter

relies on a recursive algorithim which constantly updates the estimated

sensitivities as more standard mixtures are analyzed. The recursive nature of

this filter, which has only recently seen application in analytical chemistry,

has the potential of providing feedback for on line evaluation and optimiza-

tion of the calibration process.

Multicomponent Bilinear Models

The multicomponent bilinear model is obtained when a second measurement

dimension is incorporated into the multicomponent linear model. This model

describes the response of a single mixture sample along two independent

measurement axes. Important applications of the bilinear model in analytical
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chemistry include instrumental techniques based on two spectroscopic measure-

ments, e.g. fluorescence emission-excitation matrices or EEMs, and techniques

based on a combination of chromatographic and spectroscopic measurements, e.g.

LC/UV, CC/MS, or GC/FTIR analyses. The response of a single component can be

described as

M = a x y' (45) 0

where M contains the measured responses and is the outer product of the vec-

tors x and y multiplied by a concentration dependent factor, a. The vector x -

represents the spectraI, chromatographic, or temporal profile in the first

dimension and y represents the spectral, chroatographic, or temporal profile

of the compound in the second dimension. For example, a GC/MS peak consisting -

3
of 50 mass spectra each composed of 20 distinct m/e ratios would result in a

matrix of spectral intensities, M, containing 50 rows and 20 columns. The

vector x would have 50 elements and describe the gas chromatographic elution

profile. The vector y would have 20 elements and represent the mass spectrum

of the pure compound. Normally, x and y are normalized to a length of one, so

that the factor a is then proportional to the standard concentration of the

pure compound. Assuming that each component in a N component mixture responds

independently of the remaining N-1 components, the response of the mixture can

be represented by

N N
M = cM. =E cj(axy')j (46)i=1i i i=1 ': .:::

where Mi is the standard response matrix due to component i in the mixture
3

and ci is the concentration of the i-th component divided by its standard

concentration.
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Least Squares Multiple Regression

The analysis of the data obtained from an experimental system, which is

described by the multicomponent bilinear model, depends on the information

available to the analyst. A common problem is the quantitaticn of several

components whose identities are known and whose standard matrices are avail-

able. In this situation, least squares regression may be used. The objec-

tive is to minimize the sum of the squared elements of the residual matrix,

E, which is defined as

N
E M - E lPk(Mij)k (47)

where the parameters Pk are the amounts of each of the k compounds present

in the mixture. Warner et al. has applied this method to the analysis of
p

fluorescence emission-excitation matrices (41). The least squares approach,

while easy to implement and conceptually simple, yields accurate results

only if standards of all of the mixture components are included in the data

analysis.

Rank Annihilation

In many situations, the identities of all components contributing to

the measured response may not be known. Ho and coworkers have developed the

method of rank annihilation to allow the quantitation of one or several

components without requiring knowledge of all of the components in a mixture

sample (42,43). They have applied this method to the quantitative analysis .'-

of multicomponent emission-excitation matrices (EEMs) obtained from the
p

analysis of polynuclear aromatic hydrocarbon mixtures with the video fluor-

ometer. Ideally the mixture matrix, M, should have a rank equal to the

number of components, N, in the mixture. For a mixture of N components, the
S

best least squares approximation of M is given by
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N
klkkV (48)

where

MVk = kUk (49)

and

M'uk = kVk (50)

The eigenvectors {ui,...uN} and {vl,...VN} should span the same vector

spaces as the pure component vectors {xi,...xN} and {yl"'YN)" The number

of nonzero eignevalues, Ck' equals the number of components in the sample.

In order to perform rank annihilation an amount, P, of the standard matrix,

M1, which corresponds to a component known to be present in the mixture, is

subtracted from the mixture matrix, M, to yield

E =M-pM1  (51)

When the correct value of /, corresponding to the concentration of M1 in M,

has been subtracted the rank of EE' will be N-1. This is indicated by one

of the nonzero eigenvalues in EE' approaching zero. Since real data con-

tains experimental error, the eigenvalue does not become exactly zero, but

it does have a distinct minimum. The advantages of this technique are that

it does not require the knowledge of all of the sample constituents or the

presence of selective spectral regions.

If quantitation of several known species in a multicomponent bilinear

mixture are desired, then an extension of rank annihilation based on the

Fletcher-Powell algorithm may be used (44). This algorithm allows simul-

taneous computation of the concentrations of all known components in the

Page 32

,.*::.:.**-..



mixture sample. McCue and Malinowski have used rank annihilation of UV

absorbance spectra to quantify coeluting liquid chromatographic peaks (45).

Applying rank annihilation to LC/UV data requires that the elution profiles

of each individual component in the mixture are exactly reproducible between

the chromatographed standard samples and the mixture.

Self Modeling Curve Resolution

In 1971, Lawton and Sylvester (46) reported a method, which they termed

self modeling curve resolution, for resolving two unknown overlapping func-

tions from an observed set of mixtures of the two functions. They noted

that this type of problem arises frequently in areas such as chromatography

and spectrophotometry. This method is based on the assumption that neither

the identities of the individual components nor their responses are known,

but the responses for a number of mixtures of varing relative amounts of the

same underlying components have been measured. The objectives of self

modeling curve resolution are two-fold: first, to estimate the spectra of

the underlying pure components; and second to quantify the amount of each

pure component present in a given mixture. The model developed by Lawton

and Sylvester can be described as follows. The measured response of a

mixture of two pure components can be expressed as the sum of the responses

of the individual components. This is simply the two component case of the

multicomponent linear model developed in the last section and can be written

m =xy 1 +x 2  (52)

where m represents a single mixture spectrum, x1 and x2 are the concentrations

of the two pure components,and the vectors y, and Y2 are the spectra of the

pure components. Normalization of the pure component spectra does not re-

strict the shape of the unknown spectra. The concentrations x1 and x2 are now

defined relative to the concentration of analyte which produces an absorbance
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spectrum of unit area. If N different mixture samples of these two components

are measured, then the entire data set can be expressed in matrix form as

u = X Y (53)

where M is a N x P matrix of measured responses, X is a N x 2 matrix of anal-

yte concentrations, and Y is a 2 x P matrix of analyte spectra scaled to unit

area. Since only two components are present, each observed mixture spectrum,

e.g. each row of M, can be expressed as a linear combination of the first two

eigenvectors of the second moment matrix, M'M/N. That is

mi = V1 i2 V2 (54)

where m.i is the i-th mixture spectrum and V1 and V2 are the eigenvectors

associated with the two largest eigenvalues of M'M/N. The spectra, y1 and

Y2' of the two pure components must also be linear combinations of these two

eigenvectors.

Y =ilV1 i2V2  for i=1,2 (55)

Determination of the values of nil and i2 is equivalent to estimation of the

unknown pure spectra.

Lawton and Sylvester applied three restrictions in order to obtain physi-

cally meaningful estimates of the pure spectra, yl and Y2 " The first re-

striction was that all elements of the unknown pure spectra must be non-

negative. This implies that nil and '7i2 must satisfy

lilVlk 1 i2 V2k > 0 for all k=l,...P (56)

where v~k is the k-th element of eigenvector V.. This is equivalent in a

chemical sense to not allowing negative absorbances. The second restriction
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was that all of the mixture spectra must be composed of non-negative amounts

of the two pure components. This requires x.. > 0 for all i and j. From

equation 52, 54, and 55, it can be shown this restriction is equivalent to

requiring x i > 0 and x i2 > 0 in

= Xil(17,t+ 12) x.2(,21,,22) for all i=l,...S (57)

The final restriction was based on the assumption that the 
unknown spectra,

Yi, have been normalized to unit area. Figure 1 illustrates these three

restrictions plotted in the 2-dimensional eigenvector space {V1,V2}. The

angle formed by the inner constraint in figure I represents the range of

relative analyte concentrations within the set of mixture samples. The

angle formed by the outer constraint is related to the spectral uniqueness

of the two pure components. Without requiring any assumptions as to the

shape of the spectral curves, two regions, FI and F1 I, which contain the

eigenvector representation of the pure spectra, y1 and Y2' were obtained.

Sharaf and Kowalski (47,48) have considered the problem of quantitation

in the two dimensional eigenvector space. They have shown that quantitative

resolution of the two components in any given mixture spectrum is a straight

foward function of the relative positions of the two pure spectra and the

mixture spectrum in the eigenvector space. Assuming the mixture spectrum

ha§ been normalized to unit area, it will fall somewhere along the line

segment separating regions FI and F11 in figure 1. In order to quantify a

mixture spectrum, the positions of the pure spectra, yl and Y2 within the

regions F, and FII, respectively, must be known or estimated. If point m in

region FI is selected to represent the pure spectrum of component 1 and
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point n in region FII is selected to represent the pure spectrum of compon-

ent 2; then Sharaf and Kowalski proved the fraction of the total response of

mixture i due to component 1, F.l, is given by

Fii =dni / dmn (58)

where d. is the euclidean distance from point n to mixture i and d is theni mn-

distance from point m in region FI to point n in region F1 I. The analogous

expression for the fraction of the total response of mixture is due to compon-

ent 2, Fi2, is given as

Fi2 =dm / dmn (59)

The major problem to be addressed in quantitating mixture spectra is the

selection of the points m and n to be used as the best estimates of the pure

spectra, y, and Y2 " Sharaf and Kowalski considered several possibilities.

First, if the width of the solution bands, FI and FII, are equal to zero,

then pure spectra of both components have been measured and at least one

specific sensor (e.g. wavelength, mass/charge ratio) exists for each compon-

ent. In this case no assumptions are necessary to correctly quantify the

mixture spectra. Second, if the solution band widths are not zero but speci-

- fic sensors are known to exist, then all measured samples are mixtures of

both components. Since specific sensors are known, the outer edges of the

solution bands are the correct choice for the estimates of the pure component

spectra. Third, if the solution band widths are not zero and specific

sensors are not known to exist, then some assuiptions must be made in order

to quantify the mixture. The authors recommended using the inner edges of

the solution bands, e.g. the purest spectra recorded, as an initial estimate

of the pure component spectra. Alternately, the mid-points of each region

may be used in the absence of further information.
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A similar approach to curve resolution has been used by Martens (49).

The major difference in the model used by Martens compared to that used by

Lawton and Sylvester is that prior to extracting the eigenvectors of the

moment matrix, Martens normalized the mixture spectra to constant area and

centered the data matrix by subtracting the mean response of each sensor.

This resulted in one less eigenvector being required to represent the mixture

spectra in the reduced eigenvector space. Therefore, a mixture spectrum con-

taining two underlying components can be represented by a linear combination

of the mean and the first eigenvector of the centered covariance matrix. The

advantage of this additional step is two-fold: first, one less dimension is

necessary to represent the data, hence the factor analysis solution is some-

what easier to interpret; and second, the large trival variance associated .

with the mean has been removed by centering the data. Martens has made the

same assumptions as were used by Lawton and Sylvester: first, only non-

negative responses are allowed; second, only non-negative quantities of anal-

ytes may be present; and third, the pure component spectra are scaled to con- - -

stant area. Spj~tvoll, Martens, and Volden (15) have compared the constraint

equations for the two dimensional case using the mean plus one eigenvector

model to the constraint equations as formulated by Lawton and Sylvester.

When the mean plus one eigenvector model is used, quantitation can be

accomplished using the method described by Sharaf and Kowalski (48). Osten

and Kowalski (50) have recently examined the quantitative accuracy of self

modeling curve resolution for the analysis of UV absorbance data obtained

from a diode array high performance liquid chromatography detector.

Warner et al. (51) have used an approach similar to curve resolution

which is based on the eigenanalysis of fluorescence emission-excitation
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matrices. This method makes use of the same assumptions as the Lawton and

Sylvester approach, only non-negative responses and non-negative quantities

of each component are permitted. Warner and coworkers have relaxed these
S

constraints allowing some elements to be slightly below zero in order to

account for noise in the experimental data. Since the EEM represents data

involving two spectral dimensions, they have considered the uncertainties in
I

the estimated spectra for differing combinations of spectral overlap involv-

ing either one or both spectral dimensions between the two pure components.

I

The problem of generalizing curve resolution from the 2 component situa-

tions described above to the N component case is not trivial. Martens (49)

examined the problem of three component mixtures of cereal amino acids. Ohta
D

(52) has shown the solution of the 3-components problem for a mixture of

photographic dyes. Very recently, Borgen and Kowalski (53) have described a

general solution for the N-component resolution case. In all of these situa-

tions, the same non-negative quantity and non-negative response constraints

have been utilized.

The multivariate methods discussed can be used to improve the precision

and accuracy of an analytical procedure. The widespread incorporation of

microprocessors in analaytical instrumentation can inundate the chemist with
I

raw data. In order to obtain valid chemical information from this wealth of

data, the analyst must consider not only the chemical system under evaluation

but also the advantages, disadvantages, limits, and assumptions inherent in
p

various potential data anlaysis approaches.
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Table I: Classification of Unconstrained Additive Mixtures
S

Class Concentrations Spectra

1A known known

IB known unknown

2A unknown known

2B unknown unknown
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Figure 1. Generalized plot of two dimensional eignevector

space. The outer edges of the shaded region

represent the non-negative response constraint.

The inner edges represent the non-negative quantity

constraint. The regions F and F are the
I II

are the allowable regions for the location

of the pure spectra m and n.
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